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TECHNICAL NOTE D- 

SOME ASPECTS OF THE DISTRIBUTION OF METEORIC 
FLUX ABOUT AN ATTRACTIVE CENTER' 

SUMMARY 

The discussion is in the form of a general survey to illustrate the magnitude and 
nature of some of the problems associated with measuring meteoroid flux from moving 
satellites. 
common to the treatment of charged particles in electromagnetic fields and the treat- 
ment of the structure of the flux field constitutes an extension of the asymptotic discussion 
of the Rutherford scattering problem involving Coulomb repulsion to the region near an 
attracting force center. The problem of the orientation of a non-spherical detector is 
not considered. 

The application of the Liouville theorem represents an  extension of a practice 

An attempt will be made to apply the techniques developed here to the detailed 
interpretation of the count rate measured by the Saturn boosted micrometeoroid satellite. 
Statistical methods must of course be developed to bridge the gap between the analytic 
streams assumed here and the paucity of counts expected from the coming experiment. 

A mathematical basis for discussing such subjects as the focusing of meteoroids 
by the earth has been provided, but considerable work still remains on the problem of 
using measured distriiiutions, with no velocity or  direction information, to estimate the 
meteoroid flux at infinity. 

SECTION I. INTRODUCTION 

The impact of meteoroids on a spacecraft will  depend on the meteoroid distribution 
and the location and the state of motion of the spacecraft. One can argue on an intuitive 
basis that the gravitational field of the earth will  concentrate the meteoroids in the vicinity 
of the earth and that meteoroids near the earth will  be moving faster because of the gain 
in kinetic energy available from the earth's gravitational field. 
motion of the spacecraft will change the apparent direction and rate of the meteoroid 

It is evident also that 

Paper presented at the COSPAR Fourth International Space Science Symposium, 
Warsaw,  Poland, June 3-12, 1963. 



impact, as well  as altering the energy and momentum exchange on impact. If the mete- 
oroid distribution is not isotropic in direction and the spacecraft is not a sphere, it is 
quite possible that the orientation of the spacecraft can be important in determining the 
meteoroid impact rate. 

In discussing the several phenomena of inwrest, it is convenient to employ a 
distribution function N(T, V) in position and velocity space such that the expression, 

represents the number of particles contained in the six-dimensional element of volume 
dr  dv, where r is the position vector, drawn from the earth, and 
Because the mass of a particle does not affect its motion in the gravitational field of the 
earth, the distribution over mass  is not considered. The particle density N(F) is given 
by the integral of N(7,Y) over velocity space, that is ,  

-- 
is the velocity vector. 

- -  - 
N ( r )  = JJJN(r ,v)  dv . 

The particle flux, numerically equal to the impact rate on a sphere which presents unit 
area to all directions, is defined as 

where v is the magnitude of the velocity vector 7 .  
density J (  r,  G) is given by 

The directional flux, or  vector current 

- _ - -  
J(r,G) = J v N ( r , v )  dv (4) 

A 
where v is a unit vector along v.  

Flux is a generalization of the current concept and reduces to the magnitude of 

When particles are incident simultaneously from two 
the current vector when the corpuscles are incident upon an infinitesimal surface or  
volume from a single direction. 
o r  more directions - as they are in meteoric, cosmic ray, nuclear radiation, and all 
isotropic fields - one can perform a useful summation' over all of the currents by defining 

I. 
Summation is not vectorial but is over the magnitudes of the current vectors. 
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the flux as the 

total particle path - length traced out per  unit 
volume, at the point of interest, during unit time. 

Since a cylinder whose base is of unit area,  and whose height is 1 vi I , containing 
pi particles per unit volume, can be regarded as flowing through the unit volume during 
unit time , where 

vi = the velocity of the particles incident from ith direction 

p. = the density of the particles incident from ith direction, 
1 

the path length generated within the unit volume during unit time is clearly pi vi . 
can w r i t e  the flux Q, as 

We 

(J. the current due to particles from i 
1 

direction) 

In the case of particles incident from a single direction, this reduces to the 
current J o r  number of particles crossing unit area normal to the current, during unit 
time, i. e .  , Q, - I J I  . 

The number of particles crossing a unit area per  unit time is given by 

h 
where !d is the outward normal unit vector to the area and dw is the element of the solid 
angle. The integral over w is to be carried out over a 27r solid angle to obtain the impact 
rate on one side of the area.  

The problem posed is that of determining how N ( r ,  v) and the associated quantities 
N ( r )  , Q, (7) , x(y, G) and J(r, fi) are changed by the presence of the earth and the motion 
of a satellite designed to measure them. 
write 

The law of energy conservation permits us  to 

where voo is the particle speed at infinity, y is the gravitational constant, M is the mass 
of the earth, and v ( r )  is the particle speed at a distance r from the earth. 
conservation of angular momentum permits us to wr i te  

The law of 

* 
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where a is the impact parameter and r and v are the position and velocity vectors at any 
point on a particle orbit. 

From Equation 6, we see that the impact problem is more severe near the earth 
than in free space, because of the additional speed associated with the entry of the particle 
into the gravitational field of the earth. Further, we can see that a monoenergetic distri- 
bution at infinity is monoenergetic everywhere, with the correct speed given by Equation 
6 .  In Figure I, the dependence of kinetic energy on distance from the earth is shown 
graphically. The escape velocity ve is given by 

ve = ,/- = I. I x 104 m/sec, (8 )  

where r 
Figure ?illustrates well the expectation that high velocity meteoroids are influenced 
relatively little by the earth. 

is the radius of the earth, has been chosen as a convenient reference velocity. 

SECTION II. APPLICATION OF LIOUVILLE'S THEOREM 
TO MONOENERGETIC ISOTROPIC DISTRIBUTIONS 

The Liouville theorem states that the density of particles in the neighborhood of 
a given particle in phase space does not change as a result of the particle motion. 
fore, if (TlyVl) and (T2,2,V2) a r e  two points in phase space which lie on a particle trajectory, 
then 

There- 

The distribution function N(F,V) may be taken as the phase space density, although it is 
more common to use the momentum rather than the velocity coordinates. The Liouville 
theorem can be applied to show that, if the distribution of particles is uniform, isotropic 
in direction, and monoenergetic at infinity, it is monoenergetic and isotropic everywhere. 
This can be seen by examining the possible trajectories which can be drawn through a 
point located by the position vector 7 ,  which locates the point relative to the earth. 
Through this point, trajectories can be drawn in all possible directions and traced to 
infinity, subject only to the constraint that everywhere 

4 
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FIGURE I. THE EFFECT OF THE EARTH ON THE PARTICLE KINETIC ENERGY 



ve being the velocity of escape at any point T. If the two points in Equation 9 a r e  con- 
sidered to be located at : and at infinity, every possible direction at r can be connected 
to infinity, where the distribution is isotropic, monoenergetic, and uniform, and where 
the particle density in phase space, by the Liouville theorem is the same as at F . 

Let us assume that the distribution function at Ti in Equation 9 can be written in 
the form of a Dirac delta function, 

where c is a constant, vi is the variable of distribution, and v (  ri) is a speed parameter. 
Equation I1 states that the distribution at Ti is isotropic, spherically symmetric, and 
monoenergetic, with all particles having a speed v(  ri) . In terms of spherical coordinates, 
the element of volume in velocity space can be written as 

From Equation 2 the particle density is given by 

vi=- e i = n  ~ ~ = 2 7 T  

vi=o ei=o @1=0 
N(r1) = J s c6 [vi - v ( r i )  I vi2 dvi sin Bideid@l 

At Tz , another point on a trajectory through TI , Equations 2, 9, il, and 12 permits us 
to write an expression fo r  the particle density in the form 

vz=m e2=n @2=2n 
- -  

N(:z) = J J J N(r2,v2)  v22 sin O 2  dv2 de2 d@2 
v2=0 e2=0 ~ ~ = o  

v2=* ez=n qz=27T 

= s  s s c6[vi- v ( r i ) ]  vz2 sin 02 dv2 de2 d@2 
vz=o e2=0 ~ ~ = o  

6 



vp=* 

= 4 ~  c 6[vi - v(r i )  ] v; dv2 . 
v2=0 

If, in particular, w e  assume that the distribution represented by Equation I1 
results from an isotropic, uniform, monoenergetic distribution at infinity and that the 
particle speeds vi and v2 are related through Equation 6 for the conservation of energy, 
we have 

so that 

The substitution of Equations 15 and 16 into Equation 14 yields' 

vi= * 
N(T2) = 4 n  c s  6 [vi - v ( r l ) ]  v2 vi dvi 

The ratio of particle densities at F2 and Ti is given by Equations 13 and 17 as 

If ri is assumed to be at infinity and r2 is arbitrary, the application of Equation 6 results 
in 

(19)  N ( ~ ) / N ( * )  = v(T')/v( *) = [ I + 2yM/rvL] l / 2  

In a like manner, the ratio of fluxes is found to be 

alternatively this can be regarded as transformation - i. e .  , Jacobian J(vz/vl) = vI/v2 
to obtain the same result. 

7 



_. .. . . .. - .. .... . 

In the vicinity of a finite earth, the meteoroid densiky and flux predicted by 
Equations 19  and 20 are reduced by the shielding effect of the earth. In Figure 2, the 
point P at which the flux is to be computed is located at a distance r from the earth. 
Particles which would have arrived at an angle of less than 8, have been intercepted by 
the earth. The correction factor F for Equations 19  and- 20, for  the case of isotropic 
radiation, is just the ratio of the solid angle over which radiations can arr ive to the 
total solid angle above the point. Therefore 

e- I e- 
F = J sin ede / :=, sin 8 d8 = l + cos Om] 

e=em 

Using Equation 7, the definition of the vector cross product, and the fact that r 
and v a re  normal at the point of closest approach 'E, as shown in Figure 2, 8, may be 
defined by the equation, 

amvW = rEvE = r v( r) s in  Om, (22) 

where am is the impact parameter associated with the grazing orbit, and the conservation 
of momentum is applied to three points located on the grazing orbit. 
and 22, 

From Equations 6 

sin 8, = [ rEVE] [ r v ( r ) ]  / 

and 

-- - 1 { I+ [ I- (y)2 - (vL '+2rh l / rE)  
2 vL + 2 y M / r  

With this correction factor, Equation 20 now becomes' 

Compare with S. F. Singer, Nature, Vol. 192, No. 4800, pp. 321-323, October 1961, 
where several of the techniques used here a r e  employed in a less  extensive development. 

8 
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By making the substitutions, 

x =  r/rE , 

v 2 =  2yM/rE , e 

U=Voo/Ve  , 

we can write Equation 25 as 

In Figure 3, @ ( r) /@ ( 00) is graphed as a function of x with u as a parameter. 

In dealing with particles in orbit about the earth, let us make the assumption that 
the distributions a r e  isotropic in direction except for directions which a r e  excluded 
because the corresponding particle orbits intersect the earth. For the particle to be 
captured, we must have v( r) 5 2yM/r everywhere, which corresponds to a negative 
total energy. The results a r e  much the same as before, except that we can no longer 
choose the reference point at infinity and we must exclude both incoming and outgoing 
particles whose orbits intersect the earth. 

If ro is chosen as the reference point, Equation 20 is written as 

where F is a correction factor and vo is the speed at  ro. Because incoming and outgoing 
orbits should be eliminated from the flux contributions, at both the reference point and 
the observation point, Equation 21 becomes 

COS e 
COS eo 

m 
sin Ode = 

e-rr-e, 
F =  1 

e=em 

From Equation 22 

= r v sin 8, = r v sin 8, rEVE o o 

10 
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where eo and Om define the cones of intercepted trajectories at ro and r respectively as 
shown in Figure 2, with 

eo < e < 7~ - e,, sin eo = 'EVE/'oVo , (33 )  

and the permissible directions at r given by 

em< e < 7~ - e,, sin em = rEVE/rV . (34)  

Therefore 

C O S  em 
COS eo 

- - F =  

and 
n 

From Equation 6 

( 3 5 )  

Vo2 - 2yM/r0 = v2 - 2 y M / r  

so that 

v2 = v - 2yM(1 /r0  - i/r) 
0 

and 

v = v - 2 y M ( l / r o  - l/rE) 

Using Equations 26 and 27 and defining u and xo by the equations 

E o  

u=vo/ve , 

xo= rdrE , 

(37 )  

(38 )  

( 3 9 )  

we may use Equations 38 and 39 to wr i te  Equation 36 as 

1 2  



Figures 4 and 5 show plots of $/ (1) /@ ( ro) as a function of radial distance from 
the earth for ro equal to two and four earth radii. 

SECTION III. TREATMENT OF MONODIRECTIONAL, 
MONOENERGE TIC DISTRIBUTIONS 

A function describing the distribution of meteoroids in position and velocity space 
may be approximated by the superposition of a group of monodirectional monoenergetic 
distributions which have been given proper weight. In treating neutron and gamma trans- 
port problems, for example, it is common practice to approximate continuous distributions 
in energy by a number of weighted energy groups. Computers a r e  used to obtain a solution 
for each energy group, and the solutions are added to yield a total solution. 

Following the same practice, let us assume that we have an infinite plane emitting 
meteoroids in the positive x direccion as shown in Figure 6. A s  the meteoroids approach 
a center of force, they increase in speed and are deflected from their straight line paths. 
The speed of the meteoroid as a function of position relative to the gravitating body is 
given by Equation 6, which is a statement of the conservation of energy. 

The radiation intercepting a spherical surface of radius r can be computed simply 
from angular momentum considerations by using Equation 7. 
momentum at infinity to the angular momentum at the point of closest approach for a 
particle which just grazes the sphere of radius r ,  we obtain 

Equating the angular 

v W a = v ( r ) r  . (43) 

From Equation 6 

v ( r )  = (2yM/r + v:) 

so that, combining Equations 43 and 44 we have 

r/vw a = (2yM/r +v:) '/2 

(44) 

(45) 
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FIGURE 6. BEHAVIOR OF A MONOENERGETIC, MONODIRECTIONAL DISTRIBUTION IN 
THE VICINITY OF THE EARTH 



All particles with smaller impact parameters will  intersect the sphere of radius r. If 
the infinite plane emits meteoroids normally at the rate of c particles per  unit area per  
unit time with speed vo3, the number intersecting the sphere of radius r is the number 
with impact parameters less  than a ,  o r  

I = ra2c = n(  i + 2yM/rv;) cr2 (46) 

The number intersecting the earth is given similarly by 

A plot of earth intercepts as a function of velocity at infinity is given in Figure 7. 
same result (Equation 20)  is obtained for the isotropic case, and this plot indicates the 
magnitude of some of the corrections needed for radar observations of incoming meteoroids. 

The 

The flux $(T) at a point can be conveniently approached in terms of the path length 
per unit time per unit volume.traced out by the particles as they move along trajectories. 
Imagine a differential volume 4nr2dr  penetrated by a trajectory as in Figure 8. The path 
length created in this voluke by a particle moving along the trajectory is given by 

‘1 dr. 

The factor of two is included because the orbital symmetry requires that the particle 
have the same track length on emerging from the shell. 
be evaluated formally from Equation 48 and the orbit equation, it is easier to use the 
conservation of momentum equation and write, from Equation 7, 

Although the track length can 

IT x VI = a voo = r v sin CY 

where a is as shown in Figure 8. Therefore, 

sin a! = av,/rv( r) . 
From Figure 8 

d r  = ds cos CY 

and 

ds = dr/cos a! = dr/ [I - sin2 a! ] l / 2  

17 
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r v  sin a = a va 
dr = ds cos a 

a = impact parameter 

FIGURE 8. THE RELATIONSHIP O F  THE ELEMENT O F  TRACK LENGTH ds TO THE 
CONSERVATION O F  ANGULAR MOMENTUM 



The path length contributed by particles with impact parameters between a and a + da is 
given by 

The total path length in the differential element of volume 4nr'dr is found by integrating 
this expression with respect to a and subtracting the part  which intersects the earth. 
The average flux <@> over the surface is this integral divided by 4nr2dr, viz. 

- J a ' a E 2 ~ a c d a d r  / 1 I - (avW/rv) '  J I/'} /4nr2dr 
a=O 

or ,  since the flux at  infinity is equal to c, 

where, from Equation 43, 

and 

% 2 l / 2  S a  d a /  [i -(-) a vw ] = -(=) ' [I - (avW/rv)'] 
rv VW 

(54) 

20 



Therefore, 

This is the same result as for the isotropic case, as expected. 

A. STRUCTURE OF THE FLUX FIELD FOR THE MONOENEkGETIC, MONO- 
DIRECTIONAL CASE 

I. Basic T r - e c t o r y  Geometry and Perspective. Consider the physical 
situation represented in Figure 6 wherein a very broad stream of particles, mono- 
directional and monoenergetic at infinity, is incident upon a sphere of radius, r ,  
centered about the source of an attractive inverse square central force field. We 
begin our analysis by considering a very thin filament of the stream, and we recognize 
by virtue of the axial symmetry of the distribution depicted in Figure 6 that the behavior 
of this filament is typical of a set of trajectories which form the elements of a cylindrical 
shell at infinity. 

Let J ( m )  represent the magnitude of the flux vector at infinity; and let r rar t  be the 
value of the impact parameter which characterizes all of the trajectories forming a 
cylindrical shell of radius rrarl. At a point in the vicinity of the center of force, the flux 
vector will be denoted by J (T) .  In particular, consider the particle current crossing a 
unit area of the sphere about the attractive center. The trajectories composing this 
current are characterized by some value If a is the 
elemental area, and a the angle between J(r)  and -a, as shown in Figure 9,  this 
current is 

of the impact parameter. - _  

- -  - 
-J(r) * dA = J(7) dA cos a! = 2n a d a J (00). 

Writing the element of area dA in spherical coordinates as 

we have after rearrangement, 

where a! is the angle between a trajectory tangent vector and the radius vector 7 at the 
point where the trajectory intersects the sphere of radius, r. 

21 



FIGURE 9. PERIGEE AND BASIC ANGLES 



From Equation 50 and Figure 8, 

where we have related the velocities at r and at infinity by means of Equation 6,  and 
have introduced an inverse distance 

a) 

From Equations 63 and 64 

We postulate' that the trajectories are hyperbolae (unbound particles of the form 

cos ( 8  - 8k) J 1 . (66)  

where the eccentricity E is given by 

By using the requirement that r must go to infinity as 8 approaches zero, it  is 
seen that 

or 

I*  'The general equation of a conic. Goldstein, H . ,  Classical - Mechanics, Addison- 
Wesley, p. 78. 1959. 
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The trajectory is closest to the origin when 8 = 8k . 
occurs when the denominator of Equation 66 is maxi”;  i. e. when 8 = 8k; and 

This minimum r, or  perigee rp , 

n 

-Na” 
P I + €  * 

r -  

The angle 8k is a monotonic decreasing of k; k = 0 corresponds to a trajectory whose 
perigee is at  8 = R, while very large k values correspond to 8k but slightly larger than 
7d2. 

Equation 66 can be regarded as the classical form 

a *  (e2 - I,) 
I + € C O S  @ r =  i71) 

in terms of which the theory of conics is usually discussed; rra’rr is called the semi- 
transverse axis of the hyperbola. In our case E > I ,  and with our choice for the 8 = 0 
direction, namely, that direction anti-parallel. to the incident stream at infinity, Equation 
71 represents a pair of hyperbolae whose major branch (i. e . ,  r > 0) has the force center 
a s  an internal focus. 

We can now straightforwardly make the following geometrical identifications, and 
in so doing we point out that the significance of a given k value is that it selects a set of 
trajectories possessing in common, one focus, a 1,ine of symmetry ( 8  = 8k) ,  and the same 
asymptotes. 

The half angle /3 between the asymptotes is given by 

Defining the distance between the perigee of any pair of hyperbolae (major branch and 
its conjugate) to be 2a’, one finds that 

and 

241 + k 
Y 

2 ~ a ’  = 2 E/Y = 

24 



is the distance between the source and the other focus for any pair of hyperbolae. 
relationships a r e  shown in Figure 10, where they a r e  also displayed in terms of k and 
the impact parameter. 

These 

As energy varies at constant k = y2a2 , the distance at perigee and distance to the 
center all vary inversely by the same factor; this is not contrary to physical common 
sense (i. e. , the greater the energy, the greater the perigee distance) because "a", 
the impact parameter is varying inversely with y. As either y is varied at a fixed impact 
parameter, o r  as ffalf ,  the impact parameter, is varied at constant energy y, one obtains 
a continuous spectrum of hyperbolae of monotonically varying 8k and pk . As y or lla" 
increases, 8k decreases toward the limiting Value of 7d2, corresponding to a particle of 
infinite energy (hence undisturbed by the attractive center) , or  to a particle of infinite 
impact parameter ( so  far away that its trajectory is undeflected) . Or to say the same 
thing another way, with either increasing energy or  impact parameter, the axis of 
symmetry becomes perpendicular to 7, ; and$, the half angle of the "cone" of trajectories 
increases toward ~ / 2 .  For decreasing y or rralr, "aff or  y being held constant respectively, 
the cone of trajectories narrows and the axis of symmetry tends to become parallel to 
v, , resulting in greater and greater scattering angles. - 

2 .  D-e_-Flux Zones. Let us assume that observations of fluxes and currents 
are made on the surface of a sphere of a given radius, r. Once this radius is chosen, 
a selection has been made of that portion of the incident stream which can intersect the 
sphere. 
y, in that trajectories possessing impact parameters greater than amax will not be 
affected enough by the attractive center to intersect the sphere. A lower limit amin is 
established for scattered "radiation" (particles that a r e  crossing the surface of the sphere 
from the inside to the outside) by the finite radius of the earth. Those trajectories whose 
perigees a r e  less  than some 1'A (in some sense a radius of the atmosphere) a r e  terminated. 
Thus a spherical zone centered about the 8 = 0 line is screened from all scattered flux. 
Equation 45 immediately provides these limiting values of the impact parameters, viz. 

This establishes an upper limit, amax, for the impact parameter for any given 

where Ver is the magnitude of the escape velocity at the point located by r . 
We consider the flux to be composed of three components, of which one is called 

direct flux, @D , the other two being scattered fluxes, @s and $6 . At any point on the 
surface of the sphere of observation, flux approaching the earth (i. e. has yet to pass 
through perigee) is direct flux; flux receding from the earth (having attained perigee) 
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is scattered flux. 
to arise from two sources. Scattered flux, @s , arising from particles whose trajectories 
lie wholly in the same hemisphere', is distinguished from scattered flux, $6 , belonging 
to trajectories which penetrate.both hemispheres. 
"upper hemisphere, 

For purposes of mathematical convenience, scattered flux is considered 

The zone, 0 < 8 < T , defines the 
the zone, T < 8 < 2 T , defines the "lower hemisphere. 

This classification of the fluxes divides the surface of the sphere of observation 
into zones as follows. For finite 'A , there is a zone, 0 5 18 15 Omin centered about 
8 = 0 in which there is only direct flux where Omin is a fLinction of y, r, and 'A . 

Next , up to a direction specified by 8 = 8k max there is a zone upon which both 
scattered and direct flux, 
only scattered fluxes, @s and @i .. There is a spherical sector defined by 18 I 5 On such 
that particles entering the sphere through this sector, all emerge from the other hemi- 
sphere; for 8, < 8 < 8k max all trajectories remain in the same hemisphere. 

and GD , are incident. For 18 I > 8k max there can be S 

I I  
TABLE I 

Sum'mary of Flux Pattern in Upper Hemisphere 

-~ Spherical Zone 
Hemisphere in Which 

Flux Components Direct Fluxes Emewe 

@D intercepted by earth 

lower 

'k max < /e1 < no direct flux 

The pattern in the lower hemisphere is the same because of symmetry. The zones 
and flux designations a r e  shown in Figure 11. 

At every point on the spherical surface we  can now explicitly indicate the f lux  
field in terms of the associated impact parameters (aD and as or  a$),  their derivatives 
with respect to 8 ; cos aD , cos as, cos a$ ; sin 8 and cos 8, where the primes refer to 
quantities associated with the lower hemisphere. To arrive at a concision with readily 
comprehensible formulae, we must develop some elementry geometrical relationships 
between the 8 's  and a ' s  and assume a 

'* Strictly semi-circles in the plane; 

convention for the latter. 

however, 'hemisphere" is conceptually helpful. 
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The convention on a will be that it is the angle from the inward pointing radius 
vector to the directed trajectory, defined to be positive in the counterclockwise sense. 
The trajectory is symmetric about the axis 8 = Ok ; thus the geometry at exit is identical 
to the geometry at entry. Thus we can immediately wri te  (See Fig. i2) 

ah+ ai=-, ab and ai 0 always . 

where, as is the convention throughout, the prime refers to a trajectory entering the 
other (lower) hemisphere. 
the impact parameters of the direct and scattered fluxes. 

These relations imply corresponding relationships between 

By the geometrical symmetry, for every trajectory the following relation holds 
between the angles made by the direct and scattered fluxes a t  their point of entry and 
exit from a sphere of observation: 

If O D  = 8k (i. e. , grazing incidence) , then 8s =ek; if 8s E O n ,  then 8D E 8, = 2 8k - n . 
Note the introduction of 8, , the angie of entry such that the trajectory exits a t  8 = T ; there 
is an associated value for the impact parameter a, which will  be determined subsequently. 

Because the earth possesses an  atmosphere of finite radius r A  , effective in 
stopping meteoric particles, not all zones of a sphere of observation receive scattered 
flux. The impact parameter characterizing the limiting trajectory can be easily found 
by taking the perigee distance rp = r A  in Equation 70; thus 

2 
__ ya min ~ 

p r A =  i + i+y2a2  i- m in 
r =  

Therefore, 

This value of rrarr when substituted into the trajectory equation (Eq. 66) yields 
I 
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which is satisfied by two values of 8 . 
can be received, is the angle of exit of the trajectory characterized by amin; it is the 
larger of the two angles just determined. In order to refer our result to the upper hemi- 
sphere, we  use 2, minus this angle instead of the angle itself. 

The minimum angle Omin at which scattered flux 

A similar use of Equation 66, solving for impact parameter rather than for angle, 
and recalling that impact parameter appears in E ,  yields 

amax = rd-; 

a, =J 2r/y . 
where amax is the largest value of the impact parameter permitting a trajectory within 
a sphere of radius r ; and a, is the impact parameter corresponding to that trajectory 
which exits from the sphere at 8 = T. 

3. The Conjugate -Trajectories. In the foregoing w e  have discussed direct 
and scattered fluxes without explicitly proving that, with the exception of a zone receiving 
only direct flux (an effect due to the earth not being a point mass) , every field point is 
threaded by two trajectories, i. e. , a direct and a scattered trajectory, or  two scattered 
trajectories. 

The trajectory equation for  given r and 8 is a quadratic equation determining two 
values for the impact parameter. Thus, using Equations 66 and 69, 

Both values of rratr correspond to real trajectories. 
henceforth denoted by a+ ; that a _ ,  the negative value, also characterizes a trajectory, 
is evident from the following. 

This is obvious for a positive’ f ra r r ,  

Let a- = -a’ and substitute in the trajectory equation obtaining 

ya -2  r =  i - cos 8 - ya’ sin 8 

which differs from our original equation by the sign preceding ya’ sin 8 in the denominator. 
Next consider the transformation 8 = -8 ’ applied to the original trajectory equation. 

a, and amax of the preceding section are both on the positive branch of Equation 72. 



I 1  I I I l l1  II I 

Basically this amounts to changing the convention for positive 8 from the clockwise to 
counterclockwise direction. The result is 

ya2 + .  ya2 
i - cos 8 + ya sin e I - cos 8’ - ya sin 8’ 

which shows Equation 84 does represent a hyperbola, in particular, one which is the 
reflection over the line 8 = 0, of 

ya 4 2  r =  I - cos 8 + ya’ sin 8 

where tfa’f’ may be a- . I 1  
Thus, rewriting Equation 84 in terms of 8’ 

ya 02  

I - cos 8’ + ya’ sin 8’ 
r =  

and we have recaptured the proper form. Evaluation of Equation 87 at the point ( rye  ) in 
the upper hemisphere requires that 8’ be replaced by -8 since the angles in Equation 87 
are measured positive in the counterclockwise sense. 
a = -a- as well, 

One therefore has upon substituting 

2 - ya- ya2 - 
I - cos(-8) + ya’ sin(-8) I - cos 8 + ya- sin 8 r =  

which by definition is satisfied at (r ,  8 ) .  

Next it is desirable to relate the angles of entrance and egress of the conjugate 
Corresponding trajectories at any point, i. e. , trajectories intersecting at that point. 

to Equation 77 for any trajectory incident on the upper hemisphere. 

e j j +  e i  
= e i  

2 

for the primed or  conjugate trajectory. The connection between OD and Ob is immediately 
established by substituting (Fig. 13) 

8’ = 8D S 

for intersections at points where 8 < maX. The resulting relation is 

32 



(a) INTERSECTION FOR 6 < Bk max 

k max (b) INTERSECTION FOR e > e 
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If the intersection is that of scattered trajectories, i. e. , 8 > 8k max at the point of 
intersection, it is clear from Figure 13 that 0; = Os. Accordingly, 

eb+ e6 
= 8' implies 06 + Os = 2 f 3 i  , 2 k 

and subtracting Equation 77, one finds 

Other interesting relationships can be readily derived; however, our aim here is 
merely to provide a foundation for further analysis and to introduce the concepts necessary 
for a succinct description of the flux field in the next section. 

4.  Exhibition of the Flux Fiel-d. In order to make a brief comprehensible 
presentation of the flux field, we rewrite the formulae for the basic parameters along 
with explanatory remarks. 

The basic equation is Equation 62 

wherein all quantities have been previously introduced with the exception of da/d 8 . 
From Equation 83 

a+ corresponds to contributions to direct flux upon entry of the trajectory, and to flux 
scattered in the same hemisphere (as it entered) upon exit of the trajectory; a, corresponds 
to scattered flux that entered from the other (lower) hemisphere. 
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This derivative must be evaluated for the calculation of flux at a point; however, for 
applications involving integrations over the sphere's surface, the de can usually be 
divided out into the de of the surface element, to convert an integration over 8 into a 
simpler one over impact parameter. The derivative da/dO is positive for direct flux 
contributions and negative for scattered flux. 

Finially, cos CY as derived in Equation 65, is for direct flux in the upper hemisphere. 
More generally 

where the 2 subscripts on CY correlate with the sign in front of the brackets, and poJ 
with the choice made for  Of the various possibilities only the 
following a re  of immediate interest; the others correspond to symmetric trajectories 
describing identical situations in the lower hemisphere. 

- i. e. , a+ o r  a, . 

For direct flux @D 
~~~ ~ 

a = a+ 

For scattered flux GS a = a+ 

For  scattered flux $6 a = a- 

CY = CY' = - 7T - "1; ; 0 < -a' < T / 2  ; so, 0 > cos c$ = cos C Y -  S D 

where ab refers to direct flux incident in the lower hemisphere. 
can be directly obtained from Figure 12 if one keeps in mind our convention on the sign 
of CY . 

These relationships 
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This development permits bne to consider any inGvidua1 flux component contri- 
bution - e. g. , $D, +s, and @ , or  components in any given direction, such as tangential 
and radial flux currents as they would be encountered by a detector. 

Thus the inward radial flux is given by 

and the counterclockwise tangential component by 

A 
where 8 is the unit vector normal to r. To calculate the flux as it would be measured by 
a moving detector, one must apply the formulae from the later section on detector motion 
to these results, which are valid, only for a detector at rest with respect to the attractive 
center. 

Finally, in considering the total flux at a point we must add the magnitudes of the 
various contributions since the scattered and direct radiations a r e  assumed incoherent. 

Thus , 

(2) -a+ 
'S = r2 sin e cos a- 

# f  = +a - (;) 
s r2 sin e cos a- 
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where in da +/de the 5 identifies the sign to be taken in evaluating Equation 96. 
the conventions we have assumed, a flux contribution is inherently positive if particles 
are entering the sphere of observation, and negative if it corresponds to departing 
radiation. 

Under 

B. VERIFICATION BY DIRECT CALCULATION OF THE RESULT OBTAINED 

GETIC ISOTROPIC DISTRIBUTIONS 
FROM THE APPLICATION OF LIOUVILLE'S THEOREM TO MONOENER- 

In this section the formulae of the preceding discussion which were  obtained 
for the monodirectional case, will be integrated over the surface of the sphere of obser- 
vation to obtain averaged values of the direct and scattered fluxes. These will be simply 
combined by adding their magnitudes, since the radiation is assumed incoherent, and 
their sum will be identified with the radial distribution of flux obtained in the second 
section of this paper, thus, for the isotropic case, obtaining independently the result, 
that the radial dependence of the flux is as 

We shall ignore the same effect due to L e  finite size of the scattering center. , t 
each point there are two flux contributions, as has been discussed in detail. In develop- 
ing these integrals , we shall rely heavily on the previous development and on Figure I I. 

We desire 

The 0 integration is the only one of a non-trival nature, and whatever difficulties this 
might entail we avoid entirely by converting the integrals to ones over impact parameter 
rather than angle.. The flux @ (r) assumes different forms for the two major regions in 
the upper hemisphere, viz 0 < 8 < Qk maX where there is direct and scattered flux; and 
Bk max < 8 < 7~ where there are scattered fluxes only. 

<"> = f $(r )  s i n 8  d e  
0 $00 
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where 

Thus 

, $ 6 ,  and q5s are given by Equation 101. They are functions of a* , cos a*, 
de specified by Equations 95 through 100 - altogether an unfriendly integral. and da 

In principle one could substitute these functions and straightforwardly perform the 
integration over 8 .  
over impact parameter - for,  (&/de) de is common to all integrands. Furthermore, 
since we are interested only in total contributions, the separation into components as 
indicated by Equation 104 is not necessary and indeed is not the most advantageous 
rep re sentation. 

where? 

However, this we avoid by noticing that all integrations can be done 

Expressing the integrals in terms of 'impact parameter 

a+ da+ 
cos a+ sin 8 de - pmax 

0 
@D 

0 

A 

$6 sin 8 de + r2 J @g sin 8 de = 

'k max 0 

-a 
n a d a  - -  n 

cos CY- 
r2 J #i sin 8 de - 

0 0 

since all @ ' contribution arises from conjugate trajectories entering the lower hemisphere 
at angles from 0 to -8, (see Eq. 77 et sequens). 

S 

a+ dat. 
cos a+ sin 8 de - samax 'k max 

r2 f q5s sin 8 de = r2 J @S 
8k max a?T 
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since the total r$s contribution enters the sphere as direct flux precipitating in the region 

'R < < 'k max * 

Now it is obvious that the Ifi subscripts are meaningless (i. e. , the a's a r e  dummy 
Therefore, recognizing that cos a+ and cos a,- have the same functional variables. 

dependence on a- , we can w r i t e  

R a da amax 
r 2 s @ s i n e d B =  s c - + s  

0 
cos a 

0 

Since we are concerned only with magnitudes, we  may replace 

a a 
* a da since in this example, f a  = - J - a ~  a cia 

J 0 Y b Y J  0 GZi! 0 0 

Then 

cos a, 
0 

J Qr sin 8 de = i 1 7 
0 1 0  

a h  7T 

cos a, 

or  

Finally, from Equation 106 

(y2r2 + 2yr) "2 f m a x  - 2y2 a da 
(y2r2 + 2yr - y 2 a 2 ) % 

0 
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where from Equation 74 

, all .reducing to 
= r  k+$,) i/2 

amax 

in full  agreement with Equation 20, the Liouville theorem result. 
9 
G 

vca 

YM 
Or ,  substituting y = - and recalling Equation 6 

C. EFFECT OF QETECTOR MOTION ON IMPACT RATE 

The motion of a particle detector changes both the energy and the direction of 
particle impact. Anyone who has ridden in a car  at night during a snowstorm knows that, 
as the car  gains speed, the snowflakes appear to arrive more and more rapidly from the 
forward direction. If we measure the rate of meteoroid impact from a moving satellite, 
we must know how to correct for the effect of satellite motion on the count rate and how 
to compute the increased penetration hazard faced by a vehicle because of its motion 
through space. 

For purposes of computation, let us assume that we have two coordinate systems, 
one in which the radiation distribution function N(F, V) is to be determined. As  shown 
in Figure 14, a particle is located in the first system by a position vector 7 and in the 
second by a position vector F *. The vector locates the second system relative to the 
first. By vector algebra 

and by time differentiation 

In the following discussion, we will assume that R is zero but that 7 is not, so  that 
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By performing the scalar product of each side of Equation 112 with itself, we obtain 

- 
Transposing V in Equation 112 and repeating the operation, we obtain 

(115) v ’ 2 =  2 v + v2 - ~ V V  COS e 

The angles 8 and 8 ’ are as shown in Figure 15. 
of a particle in one system to its kinetic energy in the other. 
easily solved to obtain the speeds and directions observed in one system (v’, e’) in 
terms of their unprimed analogues (v,  .e) .  

These equations relate the kinetic energy 
Furthermore, they are 

From Equation 114, we have 

v2 - v’2 - v2 
2V’V = 

COS e’ = 

V VO 
and substitution for v a 2  from Equation 115, followed by defining z = - (shown as z = - V V in the figures simply to avoid confusion), yields 

z COS e - I 
cos e‘  = 1 7 X E G z -  

This relationship is shown in Figure 16  for several z values. 

In the primed system, the speed of a particle described by vo(v, 8 )  in the unprimed 
system, results by solving Equation 114, which is a quadratic in v’. One finds 

VO where z = - as before, and we have taken the positive root - .the negative V I  not being 
V required in our development. 0 e could substitute cos 8’ from Equation 116 to obtain 

the relation between z and z’ 7 ; however, this is not necessary for our purposes. 
Equation 117 is plotted in Figure 17 for the same z values used in Figure 16. 
in the region z < I that for a given 8 ’ and fixed z there are two solutions for vo and f3 ; 
an associated double valuelessness exists in  Figure 17. 

v?J 

One notices 

- 
In relating the distribution function N ( r ,  F) and N’ (T”, v c )  , it is convenient to 

choose coordinate systems in such a way that the position vector r and the azimuthal 
angle @ are unchanged by the coordinate transformations. These conditions are met 
in Equation 113. Because of the invariancy of the particle density to Galilean trans- 
formations 
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By using the special conditions on our coordinate systems and the substitutions 

we can wr i te  the equation for particle density more explicitly as 

JJJ N ( r ,  v, 9 )  v2 dv dp d9 =JJJN’(r,  v’, p’ , @) vd2  dv’ dp’ de.  (120) 
R R’ 

Transforming this last integral over the primed coordinates to the unprimed 
coordinates, one has 

or  

where 

is the Jacobian of the transformation‘ implied by Equations 114 and 115. 

This result ar ises  from the intrinsic properties of this transformation and is 
valid for any well behaved function of v’, 1’. 

Thus any integral of the form 

’ Courant, Differential and Integral Calculus, p. 252. 
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f’(r) = JJJ f’ [ r , v O , p  . ,@I  ve2  dv’ dpO d@ 
R’ 

can be computed in terms of the unprimed coordinates by 

which may be more tractable. 

Therefore expressing the integral over the primed coordinates in Equation 118 
in terms of the unprimed coordinates, 

since Equation 125 is valid for arbitrary pairs of associated regions R and R’ one has 

or 

For the particular case of uniform monoenergetic monodirectional radiation of 
speedvo , 

N(Y,v,p , $1 = C 6  ( V  - v0) 6 ( p  - po) 6 ( @  - $o)  (127) 

and the particle density N (7) and flux @ (7) a r e  given by 

(128) 2 N ( r )  = N(F,v,p ,@ ) v2 dv dp d@ = C vo 

In the other coordinate system, using Equations 115 and 125, 

(130) 

A similar relation can be obtained by interchanging primed and unprimed variables. 
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and 

= c v2 + vo2 - 2 v  vo po 11'2 v; II 
The ratio 

represents the multiplication factor for the flux as a function of detector motion. 
18 shows this effect for  several values of V/vo and po . 
been obtained by more e1ementary.means. 

Figure 
This result could of course have 

If the radiation is spatially uniform, monoenergetic, and isotropic, we can wr i te  

N(T,?) = C 6(v  - v0) . (133) 

The particle density N ( 7 )  and flux @( r )  a r e  given by 

N(T) = JJJ C6 ( v  - vo) v2 dv dp d@ = 4nC v$ 

@(F) = J J I C 6  ( v  - vo) v3 dv dp d@ = 47rC vo 3 

(134) 

(135) 

In the moving system, we are able to write, by the same reasoning as before, that 

@*(F) =JJJ v 2 + v 2 - 2 v v p  C6 ( V  - vO) v2 dv dp d@ (136)  

The integration over v, p ,  and @ yields 

The absolute value signs are used because v 0  must always be positive. 
substituting Equation 135 

For vo < V , 

@ '( r) /@ ( r) = (v/v, + vO/3v) 

@ # ( r ) / @ ( r )  = 1 + (1/3) (V/v0)' 

(138)  

and for vo > V 

(139)  
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A graph of the effect of satellite motion on the isotropic monoenergetic particle flux is 
shown in Figure 19. 

The total kinetic energy in the two systems is given by 

<T> = $ m  J J J v * ~  N(?,V) v2 dv dp dq) 

For the monodirectional monoenergetic case, the ratio o 

2 

For the isotropic monoenergetic case 

2 

6’s /<Tj= I+(I) . 
vO 

Equations 140 anc 

(143) 

Graphs of these functions a r e  shown in Figures 20 and 21. 

SECTION IV. CONCLUSIONS 

The foregoing discussion has been in the form of a general survey to illustrate 
the magnitude and nature of some of the problems associated with measuring meteoroid 
flux from moving satellites. 
extension of a practice common to the treatment of charged particles in electromagnetic 
fields and the treatment of the structure of the flux field constituted an extension of the 
asymptotic discussion of the Rutherford scattering problem involving Coulomb repulsion 
to the region near an attracting force center. The problem of the orientation of a non- 
spherical detector was not considered. 

The application of the Liouville theorem represented an 

An attempt will be made to apply the techniques developed here to the detailed 
interpretation of the count rate measured by the Saturn-boosted micrometeoroid satellite. 
Statistical methods must of course be developed to bridge the gap between the analytic 
streams assumed here and the paucity of counts expected from the coming experiment. 
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A mathematical basis for discussing such subjects a s  the focusing of meteoroids 
by the earth has been provided, but considerable work still remains on the problem of 
using measured distributions , with no velocity or  direction information, to estimate the 
meteoroid flux at infinity. 
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